The β-Globin Recombinational Hotspot Reduces the Effects of Strong Selection around HbC, a Recently Arisen Mutation Providing Resistance to Malaria

Elizabeth T. Wood,1,2 Daryn A. Stover,1 Montgomery Slatkin,3 Michael W. Nachman,2 and Michael F. Hammer1,2

1Division of Biotechnology and 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson; and 3Department of Integrative Biology, University of California, Berkeley

Recombination is expected to reduce the effect of selection on the extent of linkage disequilibrium (LD), but the impact that recombinational hotspots have on sites linked to selected mutations has not been investigated. We empirically determine chromosomal linkage phase for 5.2 kb spanning the β-globin gene and hotspot. We estimate that the HbC mutation, which is positively selected because of malaria, originated <5,000 years ago and that selection coefficients are 0.04–0.09. Despite strong selection and the recent origin of the HbC allele, recombination (crossing-over or gene conversion) is observed within 1 kb 5′ of the selected site on more than one-third of the HbC chromosomes sampled. The rapid decay in LD upstream of the HbC allele demonstrates the large effect the β-globin hotspot has in mitigating the effects of positive selection on linked variation.

Recombinational hotspots are a ubiquitous feature of the human genome, occurring every 60–200 kb, and likely contribute to the observed pattern of large haplotypic blocks punctuated by low linkage disequilibrium (LD) over very short (1–2-kb) distances (Gabriel et al. 2002; Jeffreys and May 2004; McVean et al. 2004). Recombination breaks up ancestral LD and produces new combinations of alleles on which natural selection can act. Positive selection increases the frequency of beneficial mutations, creating LD via genetic hitchhiking (Smith and Haigh 1974). LD has been observed over great physical distances at several genes experiencing recent selection, including loci associated with malarial resistance (Tishkoff et al. 2001; Sabeti et al. 2002; Sanders et al. 2002; Ohashi et al. 2004). The β-globin hotspot spans ~1 kb and is located ~500 bp from the selected site at the β-globin gene (Harding et al. 1997; Wall et al. 2003). The close proximity of these β-globin regions allows us, for the first time, to empirically examine the signature of selection across a region that recombines at a rate 50 (Wall et al. 2003; Winckler et al. 2005) to 90 (Schneider et al. 2002) times higher than the genomic average of 1.1 cM/Mb (Kong et al. 2004).

More than 50 years ago, Haldane (1949) and Allison (1954) proposed that elevated frequencies of hemoglobinopathies such as thalassemia and sickle cell disease, which are caused by mutations at the β-globin locus, are maintained via balancing selection (“the malarial hypothesis”). Since then, malarial-resistant alleles have been identified at several other loci, including G6PD, TNF, and HLA (Kwiatkowski 2005). Early studies of the β-globin HbC polymorphism (β6Glu→Lys) suggested that this allele was also subject to balancing selection (Allison 1956). More recently, it has been shown that HbC provides protection against Plasmodium falciparum malaria without significantly reducing fitness, indicating that this allele is increasing in frequency as a result of positive directional selection (Agarwal et al. 2000; Modiano et al. 2001; Hedrick 2004; Rihet et al. 2004). Because the African HbC allele rarely exceeds frequencies of 20% and is geographically concentrated in central West Africa, it is thought that this mutation is very young (Livingstone 1976; Trabuchet et al. 1991; Modiano et al. 2001). Here, we examine the extent of LD surrounding the African HbC allele, to estimate its
age and the strength of selection acting on this mutation and to test the hypothesis that the β-globin recombinational hotspot decouples the selected HbC allele from nearby upstream regions (fig. 1a).

To generate 5.2 kb of contiguous phased sequence data, we cloned two ∼3-kb fragments that were tiled together using polymorphic sites in the overlapping region (fig. 1b). We examined 17 heterozygous and 2 homozygous individuals carrying the HbC mutation and supplemented the data set by including 18 additional African HbA chromosomes (fig. 2). Within the 5.2-kb fragment spanning the β-globin hotspot and gene region, we observe 46 segregating sites. To delineate the boundaries of the hotspot in our data, we examine the extent of LD among 35 HbA chromosomes (fig. 1c). The boundaries for the three recombinational regions correspond well with those observed in a sample of 16 African Hausa individuals (Wall et al. 2003) and in a larger study of 349 globally distributed individuals (Harding et al. 1997).

To examine the effects of selection, we compared patterns of LD on selected chromosomes with those on nonselected chromosomes. Substantially more LD is observed among HbC than HbA chromosomes (fig. 2). We employed a coalescent-based method that incorporates recombination (c), effective population size (N_e), and population growth (r) to jointly estimate the selection coefficient (s) and the time since the origin of the HbC allele (t). The selection coefficient is estimated using Slatkin and Bertorelle’s (2001) method for estimating the likelihood of s from allele frequency and the extent of LD with a neutral marker locus. The allele age is estimated from allele frequency and the strength of selection acting on this mutation and is affected little by (data not shown).

Our estimates accord well with those obtained using theoretical predictions from epidemiological data, where t < 150 generations and s ≃ 0.08 (Hedrick 2004) (see the “Material and Methods” section [online only]).

At least three HbC chromosomes in our survey (15.8%), given at the bottom of figure 2, show evidence for crossing-over and/or gene conversion within the hotspot. Dgn66bhc contains a 5′ haplotype motif identical to seven HbA chromosomes (AGCGTCTGGCA from sites −3092 to −1944), which is likely the result of a single crossover event occurring between sites −1944 and 16. Dgn99bhc possesses polymorphisms ATCTC, from sites −835 to −598, that are also found in four HbA chromosomes and may be due to gene conversion or double crossing-over. Dgn83bhc has a CACA motif, at sites −1927, −835, −598, and −543, that is also found in three HbA chromosomes. However, Dgn83bhc does not contain intervening polymorphisms that are identical to HbA chromosomes surveyed here and may be the result of a single cross-over event where the recombining HbA chromosome is not represented in our data set, or it may be the result of multiple cross-over and/or gene conversion events. Because of the higher rate of gene conversion relative to crossing-over (4:1 to 15:1) (Jeffreys and May 2004), it is likely that gene conversion is responsible for some of the patterns we observe. Evidence for recombination is observed in an additional five individuals (for a total of 38.1%), under the assumption that the HbC mutation occurred on the most common HbC haplotype observed (e.g., Dgn06bhc) (fig. 2). An alternative explanation is that recurrent mutation occurred at site 16-HbC or at sites described in the “recombinant” motifs in Dgn66bhc, Dgn99, or Dgn83. However, this hypothesis requires either (1) independent mutations at site 16-HbC on four different HbC haplotypic backgrounds or (2) that three (Dgn99), four (Dgn83), or five (Dgn66) sites have mutated 5′ of the gene on both the HbA and HbC backgrounds. Thus, it seems unlikely that elevated rates of mutation would cause decay in LD observed on the HbC chromosomes.

The extent of LD surrounding a selected allele is expected to depend on the age of the allele, the strength of selection, and the rate of recombination. The recent origin (<5,000 years) and high selection coefficient (0.04 < s < 0.09) of the HbC allele estimated here are roughly comparable to those of other malarial-resistance loci, including G6PD/A- (<11,800 years; 0.02 < s < 0.2) (Tishkoff et al. 2001; Saunders et al. 2002, 2005), and G6PDmed (<6,500 years; 0.01 < s < 0.2) (Tishkoff et al. 2001; M. Saunders, M. Slatkin, M. F. Hammer, and M. W. Nacroman, unpublished data). Long-range LD extends 400–1,600 kb at loci recombining near the genome average, including G6PD/A-, G6PDmed, and TNF/SF5/726C (Tishkoff et al. 2001; Sabeti et al. 2002; Saunders et al.
Figure 1
a, Map of the β-globin gene cluster found on 11p15.5. Four functional globin genes, one pseudogene, and the locus control region (LCR) that controls transcription and replication of the globin gene cluster (Aladjem et al. 1995) are located 5' of the β-globin gene. The position of the recombinational hotspot identified using RFLP analysis (A) (Chakravarti et al. 1984) and single-sperm typing (B) (Schneider et al. 2002) are shown above. b, Magnified view of β-globin gene and hotspot, as identified using population sequence data in 16 Africans (C) (Wall et al. 2003) and 349 globally distributed individuals (D) (Harding et al. 1997). The locations of primers that amplify the two 3-kb fragments are shown with horizontal arrows. The polymorphisms observed in a 5.2-kb region are indicated with International Union of Pure and Applied Chemistry (IUPAC) codes. Indels were excluded. Exons are shown in horizontal black boxes; introns are depicted by white boxes. Grey boxes indicate repeat motifs. The HbC mutation is circled. c, LD triangle plot of 35 HbA chromosomes in all pairwise comparisons between 42 sites. Black boxes indicate a significant D' value (P < .01). Values of |D'| are 1 unless indicated in white numbers where |D'| is multiplied by 100. Dark gray boxes indicate |D'| = 1 (P > .01), and white boxes indicate |D'| < 1 (P > .01). Light gray boxes correspond to the four segregating sites that are observed only on HbC chromosomes. Asterisks (*) indicate that pairwise comparisons are significant with a Bonferroni correction. The two regions of low recombination are outlined.
Figure 2 Polymorphisms observed in 35 HbA (top) and 21 HbC (bottom) chromosomes. To visually represent the decay in haplotype sharing, the conserved most-common long-range haplotype within the HbA and HbC chromosomes is shaded. Each site was examined sequentially, moving away from site 16. Singletons were excluded. Shaded areas include sites that are most frequent within the conserved haplotype.

Recombination, as well as mutation, can cause a transition from gray to white in this depiction. CAR = Central African Republic. DRC = Democratic Republic of Congo.

2002, 2005; M. Saunders, M. Slatkin, M. F. Hammer, and M. W. Nachman, unpublished data). The β-globin locus, however, is unique in that elevated rates of recombination are sufficiently strong to reduce the effect of genetic hitchhiking on the HbC alleles to <1 kb upstream of the gene. Thus, recombinational hotspots appear to quickly erase the signal of strong and recent selection.

It has been hypothesized that recombination is evolutionarily advantageous because selection can operate more efficiently when genes are decoupled from one another; this hypothesis predicts that recombination will be higher in gene-dense regions (Barton and Charlesworth 1998). A positive correlation between recombination and gene density (or associated features such as CpG motifs) has been observed in humans (Kong et al. 2004; McVean et al. 2004). Recombinational hotspots have been characterized at the intensely selected β-globin gene cluster and the gene-dense HLA region (Jeffreys et al. 2000, 2001; Schneider et al. 2002; Winckler et al. 2002).
Figure 3

a, Log-likelihood surface of selection coefficient (s) under the assumption of no growth (r = 0), an effective population size (N_e) of 10,000, and a recombination fraction (c) ranging from 0.4%–0.8%.

b, The posterior distribution of the age (in generations) of the HbC allele over the three values of s (0.04, 0.07, and 0.09) that correspond with the maximum-likelihood estimate obtained under the different values of c shown in panel a.

2005). Although it remains unclear whether this correlation is the result of selection favoring recombination near genes, our data are consistent with these observations. The location of the β-globin recombinational hotspot may allow selection to act more efficiently on malaria-resistance alleles at β-globin without significantly affecting the upstream globin gene copies and regulating locus control region sequence. Future studies will help determine the extent to which recombinational hotspots are preferentially located near regions that are under strong selective pressure.

Acknowledgments

We thank Matt Saunders and Jason Wilder, for fun discussions and helpful suggestions on the manuscript; Phil Hedrick and two anonymous reviewers, for thoughtful comments; Beverly Strassmann, for Dogon DNA samples and suggestions; and Matt Kaplan and Leigh Hunnicutt, for technical advice. This manuscript was made possible by National Science Foundation (NSF) doctoral dissertation improvement grant BCS-0220737 (to E.T.W.) and by National Institute of General Medical Sciences grant GM-53566 (to M.F.H.). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NSF or the National Institutes of Health.

References

